Ejercicios de Ejercicios de Geometría en el espacio. Bachillerato

(103) ejercicios de Geometría en el Espacio

  • (#3070)      Ver Solución Seleccionar

    Se considera la recta r definida por mx = y = z+2 , (m \neq 0) , y la recta s definida por \frac{x-4}{4} = y -1 = \frac{z}{2}

     (a) Halla el valor de m para el que r y s son perpendiculares.
     (b) Deduce razonadamente si existe algún valor de m para el que r y s son paralelas.

  • (#3074)   solución en PIZARRA   Seleccionar

    Considera los puntos A(2, 0, 1) , B(-1, 1, 2) , C(2, 2, 1) y D(3, 1, 0).

     (a) Calcula la ecuación del plano \pi que contiene a los puntos B, C y D
     (b) Halla el punto simétrico de A respecto del plano \pi.

  • (#3081)      Ver Solución   solución en VÍDEO Seleccionar

    Considera el punto P(1,0,0) , la recta r definida por x-3=\frac{y}{2}=\frac{z+1}{-2} y la recta s definida por (x,y,z) = (1,1,0) + \lambda (-1, 2, 0).

     (a) Estudia la posición relativa de r y s
     (b) Halla la ecuación del plano que pasando por P es paralelo a r y s.

  • (#3090)      Ver Solución Seleccionar

    Considera los puntos:

    A(1,0,3) , B(3,-1,0) , C(0,-1,2) y D(a,b,-1)

    Halla a y b sabiendo que la recta que pasa por A y B corta perpendicularmente a la recta que pasa por C y D

  • (#3095)   solución en PIZARRA    Ver Solución Seleccionar

    Halla la ecuación del plano que pasa por el punto A(1,0,-1) , es perpendicular al plano x-y+2z+1=0 y es paralelo a la recta
    \left\{
\begin{array}{rrr}
x-2y & = & 0\\
z & = & 0 
\end{array}
\right.